Môn Toán Lớp 9 cho mik hỏi định lý cos ,cosin,cotan ,tag các công thức đc ko ạ

Question

Môn Toán Lớp 9 cho mik hỏi định lý cos ,cosin,cotan ,tag
các công thức đc ko ạ
Giúp em bài này với ạ em cần gấp, đừng copy nguồn trên mạng nha. Em xin cảm ơn thầy cô và các bạn nhiều.

in progress 0
Caroline 4 tháng 2022-01-13T13:25:16+00:00 2 Answers 0 views 0

Trả lời ( )

    0
    2022-01-13T13:26:18+00:00

    Đáp án:

    Buớc tưới chuyển hướngBước tới tìm kiếm

    Bài này viết về Định lý cos trong hình học Euclid. Đối với bài về định lý cos trong quang học, xem định lý cos Lambert.

    Hình 1 – Một tam giác với các góc α (hoặc A), β (hoặc B), γ (hoặc C) lần lượt đối diện với các cạnh a, b, c.

    Lượng giác

    Sinus und Kosinus am Einheitskreis 1.svg

    Outline History Usage

    Hàm (Hàm ngược) Generalized trigonometry

    Reference

    Đẳng thức lượng giác Exact constants Tables Đường tròn đơn vị

    Định lý

    Sin Cos Tang Cotang

    Định lý Pythagoras

    Vi tích phân

    Trigonometric substitution Tích phân (Hàm nghịch đảo) Đạo hàm

    xts

    Trong lượng giác, định lý cos biểu diễn sự liên quan giữa chiều dài của các cạnh của một tam giác phẳng với cosin của góc tương ứng:

    {\displaystyle c^{2}=a^{2}+b^{2}-2ab\cos \gamma \,} {\displaystyle c^{2}=a^{2}+b^{2}-2ab\cos \gamma \,}

    hoặc

    {\displaystyle c^{2}=a^{2}+b^{2}-2ab\cos C\,} {\displaystyle c^{2}=a^{2}+b^{2}-2ab\cos C\,}

    Công thức trên cũng có thể được viết dưới dạng:

    {\displaystyle \cos C={\frac {a^{2}+b^{2}-c^{2}}{2ab}}\,} {\displaystyle \cos C={\frac {a^{2}+b^{2}-c^{2}}{2ab}}\,}

    Định lý cos khái quát định lý Pytago (định lý Pytago là trường hợp riêng trong tam giác vuông): nếu γ là góc vuông thì cos γ = 0, và định lý cos trở thành định lý Pytago:

    {\displaystyle c^{2}=a^{2}+b^{2}\,} {\displaystyle c^{2}=a^{2}+b^{2}\,}

    Định lý cos được dùng để tính cạnh thứ ba khi biết hai cạnh còn lại và góc giữa hai cạnh đó, hoặc tính các góc khi chỉ biết chiều dài ba cạnh của một giác.

    Định lý cos được biểu diễn tương tự cho hai cạnh còn lại:

    {\displaystyle a^{2}=b^{2}+c^{2}-2bc\cos \alpha \,} {\displaystyle a^{2}=b^{2}+c^{2}-2bc\cos \alpha \,}

    {\displaystyle b^{2}=a^{2}+c^{2}-2ac\cos \beta \,} {\displaystyle b^{2}=a^{2}+c^{2}-2ac\cos \beta \,}

    Hình 2 – Tam giác tù ABC với đường cao BH

    Mục lục

    1 Ứng dụng

    2 Chứng minh

    2.1 Sử dụng công thức tính khoảng cách

    2.2 Sử dụng công thức lượng giác

    2.3 Sử dụng định lý Pytago

    2.4 Sử dụng định lý Ptolemy

    3 Trong tam giác cân

    4 Sự tương đồng trong hình tứ diện

    5 Định lý cos trong hình học phi Euclid

    6 Xem thêm

    7 Tham khảo

    Ứng dụng

    Hình 3 – Ứng dụng của định lý cos: tìm cạnh chưa biết và góc chưa biết.

    Định lý cos được dùng trong phép đạc tam giác để giải một tam giác hoặc một đường tròn. Ví dụ trong Hình 3, định lý cos được dùng để tìm:

    cạnh thứ ba của một tam giác nếu đã biết hai cạnh còn lại và góc giữa chúng:

    {\displaystyle \,c={\sqrt {a^{2}+b^{2}-2ab\cos \gamma }}\,;} {\displaystyle \,c={\sqrt {a^{2}+b^{2}-2ab\cos \gamma }}\,;}

    ba góc nếu biết ba cạnh của tam giác

    {\displaystyle \,\gamma =\arccos \left({\frac {a^{2}+b^{2}-c^{2}}{2ab}}\right)\,;} {\displaystyle \,\gamma =\arccos \left({\frac {a^{2}+b^{2}-c^{2}}{2ab}}\right)\,;}

    cạnh thứ ba nếu biết hai cạnh còn lại và góc đối diện một trong hai cạnh đó:

    {\displaystyle \,a=b\cos \gamma \pm {\sqrt {c^{2}-b^{2}\sin ^{2}\gamma }}\,.} {\displaystyle \,a=b\cos \gamma \pm {\sqrt {c^{2}-b^{2}\sin ^{2}\gamma }}\,.}

    Công thức thứ ba có được nhờ giải phương trình bậc hai a2 − 2ab cos γ + b2 − c2 = 0 với ẩn a. Phương trình này có hai nghiệm dương nếu b sin γ < c < b, một nghiệm dương nếu c ≥ b hoặc c = b sin γ, và vô nghiệm nếu c < b sin γ.

    Lời giải: rong lượng giác, định lý cotang biểu diễn mối quan hệ giữa các cạnh, các góc của một tam giác và bán kính đường tròn nội tiếp của tam giác đó.

    Định lý cotang phát biểu rằng, nếu biết:

    {\displaystyle \zeta ={\sqrt {{\frac {1}{s}}(s-a)(s-b)(s-c)}}} {\displaystyle \zeta ={\sqrt {{\frac {1}{s}}(s-a)(s-b)(s-c)}}}

    là bán kính đường tròn nội tiếp và

    {\displaystyle s={\frac {a+b+c}{2}}} {\displaystyle s={\frac {a+b+c}{2}}}

    là nửa chu vi của tam giác thì:[1]

    {\displaystyle \cot {\frac {\alpha }{2}}={\frac {s-a}{\zeta }}} {\displaystyle \cot {\frac {\alpha }{2}}={\frac {s-a}{\zeta }}}

    {\displaystyle \cot {\frac {\beta }{2}}={\frac {s-b}{\zeta }}} {\displaystyle \cot {\frac {\beta }{2}}={\frac {s-b}{\zeta }}}

    {\displaystyle \cot {\frac {\gamma }{2}}={\frac {s-c}{\zeta }}} {\displaystyle \cot {\frac {\gamma }{2}}={\frac {s-c}{\zeta }}}

    Điều đó dẫn tới

    {\displaystyle {\frac {\cot(\alpha /2)}{s-a}}={\frac {\cot(\beta /2)}{s-b}}={\frac {\cot(\gamma /2)}{s-c}}.} {\displaystyle {\frac {\cot(\alpha /2)}{s-a}}={\frac {\cot(\beta /2)}{s-b}}={\frac {\cot(\gamma /2)}{s-c}}.}

    0
    2022-01-13T13:26:56+00:00

    Đáp án:

    Lời giải: Định lí hàm cos : BC2 = AC2 + AB2 – 2AB.AC.cosA

    b2 = a2 + c2 – 2accosB.

    c2 = b2 + a2 – 2abcosC

    a2 = b2 + c2 – 2bccosA. Định lí hàm sin :

    a/sinA = b/sinB = c/sinC = 2R

Leave an answer

Browse

14:7-5x6+12:4 = ? ( )